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Introduction
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introduction

Glaucoma, the second leading cause of blindness
worldwide, is a group of chronic diseases that gradually
damages the eye’s optic nerve.

This disease is divided in two major subtypes:

∙ open-angle: caused by an increasingness in the eye
pressure due to trabecular blockage.

∙ angle-closure: caused by a permanent obstruction
of the aqueous humor outflow from the eye.
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introduction
detection and treatment

An early detection and optimal treatment can heavily
reduce the risk of loss vision due to glaucoma.

Diagnosis: three different sets of examinations

∙ evaluation of the intraocular pressure, (drawbacks
and expensive treatment)

∙ evaluation of the visual field, (drawbacks and
expensive treatment)

∙ evaluation of the optic nerve head damage.
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introduction
optic nerve head examination

This evaluation is commonly performed in fundus images
through the relative size between the optic cup and optic
disc, namely cup-to-disc ratio (CDR).

The CDR is an important parameter to assess the
progression of glaucoma.

As the disease advances, the disc area is progressively
occupied by the cup.
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introduction
computation of the cdr

Segmentation algorithms: there is no perfect algorithm
for optic disc and cup segmentation.

Novel approach for this task based on Soft Computing
techniques.

Soft Computing techniques are able to handle the
imprecision and uncertainty present in the images more
efficiently than other classical paradigms.
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introduction
computation of the cdr

Algorithm uses the fuzzy mathematical morphology
based on fuzzy conjunctions and fuzzy implication
functions and its recently introduced generalization for
multivariate images, called Soft Color Morphology, jointly
with other computational intelligence techniques.

Steps:

1. optic vessels segmentation and removal,
2. inpainting and optic disc and cup detection.
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Fuzzy Mathematical Morphology
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fuzzy mathematical morphology

Fuzzy mathematical morphology, within the framework of
Soft Computing, has proved to be a powerful tool to
handle imprecision in images. This theory provides
competitive results positioning it in the state-of-the-art
of many applications.

This theory relies on the use of fuzzy morphological
operators defined using fuzzy conjunctions and fuzzy
implication functions.
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fuzzy mathematical morphology
conjunctions and fuzzy implication functions

Definition
An increasing binary operator C : [0, 1]2 → [0, 1] is a fuzzy
conjunction whenever it is increasing in both variables
and it satisfies C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.

Definition
A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication
function if it is decreasing in the first variable, increasing
in the second one and it holds that I(0, 0) = I(1, 1) = 1
and I(1, 0) = 0.
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fuzzy mathematical morphology
basic fuzzy morphological operators

Definition
Let C be a fuzzy conjunction and I be a fuzzy implication
function. The fuzzy dilation DC(A,B) and the fuzzy
erosion EI(A,B) of a grey-scale image A and a grey-scale
structuring element B are defined as:

DC(A,B)(y) = sup
x∈dA∩Ty(dB)

C(B(x− y),A(x)),

EI(A,B)(y) = inf
x∈dA∩Ty(dB)

I(B(x− y),A(x)),

where dA and dB denote the definition domains of A and
B and Ty(dB) is the translation of the fuzzy set dB by
vector y ∈ R2 given by Ty(dB)(z) = dB(z− y).
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fuzzy mathematical morphology

Figure: From left to right, original image, fuzzy erosion and fuzzy dilation.
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fuzzy mathematical morphology
closing and the top-hat transformations

From these two basic operations and the reflected
structuring element, B(x) = B(−x), we can construct the
closing C and the top-hat transformation by closing T HC:

CC,I(A,B) = EI(DC(A,B),B), T HCC,I(A,B) = CC,I(A,B)− A.

∙ Fuzzy dilation: expands the foreground object,
∙ fuzzy erosion: diminishes it.

∙ Closing operator: enlarges the foreground object by
filling sharp or thin areas of the background,

∙ top-hat transformation by closing: enhances dark
regions removed by the closing.

12



fuzzy mathematical morphology
closing and the top-hat transformations

From these two basic operations and the reflected
structuring element, B(x) = B(−x), we can construct the
closing C and the top-hat transformation by closing T HC:

CC,I(A,B) = EI(DC(A,B),B), T HCC,I(A,B) = CC,I(A,B)− A.

∙ Fuzzy dilation: expands the foreground object,
∙ fuzzy erosion: diminishes it.

∙ Closing operator: enlarges the foreground object by
filling sharp or thin areas of the background,

∙ top-hat transformation by closing: enhances dark
regions removed by the closing.

12



fuzzy mathematical morphology
closing and the top-hat transformations

From these two basic operations and the reflected
structuring element, B(x) = B(−x), we can construct the
closing C and the top-hat transformation by closing T HC:

CC,I(A,B) = EI(DC(A,B),B), T HCC,I(A,B) = CC,I(A,B)− A.

∙ Fuzzy dilation: expands the foreground object,
∙ fuzzy erosion: diminishes it.

∙ Closing operator: enlarges the foreground object by
filling sharp or thin areas of the background,

∙ top-hat transformation by closing: enhances dark
regions removed by the closing.

12



fuzzy mathematical morphology
closing and the top-hat transformations

For the vessel segmentation problem, we will use as
fuzzy conjunction the nilpotent minimum t-norm, along
with its residual implication, the Fodor implication:

TnM(x, y) =
{
0, if x+ y ≤ 1,
min{x, y}, otherwise,

IFD(x, y) =
{
1, if x ≤ y,
max{1− x, y}, otherwise.
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fuzzy mathematical morphology
the soft color dilation and the soft color erosion

Definition
Let C be a conjunction, let I be a fuzzy implication, let A
be a multivariate image and let B be a structuring
element. Then, the soft color dilation of A by B, DC(A,B),
is

DC(A,B)(y) =
(
C
(
B(x− y),A1(x)

)
, A2(x), . . . , Am(x)

)
,

s.t. x ∈ dA ∩ Ty(dB) and C
(
B(x− y),A1(x)

)
is maximum, and

the soft color erosion of A by B, EI(A,B), is

EI(A,B)(y) =
(
I
(
B(x− y),A1(x)

)
, A2(x), . . . , Am(x)

)
,

s.t. x ∈ dA ∩ Ty(dB) and I
(
B(x− y),A1(x)

)
is minimum.
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fuzzy mathematical morphology
the soft color closing and opening

Definition
Let A be a multivariate image and let B be a structuring
element. Let C be a conjunction and let I be a fuzzy
implication function. Then, the closing of A by B, CC,I(A,B),
and the opening of A by B, OC,I(A,B), are defined as:

CC,I(A,B) = EI(DC(A,B),B), OC,I(A,B) = DC(EI(A,B),B).

P. Bibiloni, M. Gonzalez-Hidalgo and S. Massanet, Soft color
morphology, 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Naples, 2017, pp. 1-6. doi:
10.1109/FUZZ-IEEE.2017.8015388
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fuzzy mathematical morphology
properties of the soft color operators

These operators preserve colors in any color space if the
structuring element is a binary image.

When dealing with fundus images, these operators are
performed using the CIELab space.:

L*: lightness,
a* and b*: chromatic information of a pixel.
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fuzzy mathematical morphology
properties of the soft color operators

For L*a*b*-encoded images, these mathematical
morphology operators generalise those of the fuzzy
mathematical morphology and they preserve the
chromatic components.

Inpainting problem: Minimum operator as conjunction
TM(x, y) = min{x, y}; and its residual implication, the
Gödel implication

IGD(x, y) =
{

1 if x ≤ y,
y if x > y.
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soft color morphology

From left to right, erosion (left), the L*a*b*-encoded Balloons image
(center) and dilation (right), using a 15× 15-pixel (toward the center)
or a 31× 31-pixel (at the sides) Gaussian-shaped structuring
element. The irregular shapes of the eroded balloons reflect their
irregular illumination.
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soft color morphology

(a)Opening (b)Original image (c) Closing

Opening and closing of the L*a*b*-encoded Mandril image, using a
15× 15-pixel Gaussian-shaped structuring element.
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Algorithm for the optic and cup disc detection
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algorithm for the optic and
cup disc detection

Flow chart of the optic disc and cup segmentation algorithm.
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first step: vessel segmentation and od cen-
ter localisation

(a) Green Channel. (b) CLAHE. (c) Top Hat.

(d) Background Mask. (e) Border Removal. (f ) Hysteresis.

Figure: Intermediate steps of our segmentation method when processing the sample
235th from the STARE dataset.
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first step: vessel segmentation and od cen-
ter localisation

OD center localisation:
For the OD center localisation, the OD search space is
reduced based on an OD probability map (determined by
the projections of the L1-norm image gradient and image
intensity to the horizontal and vertical directions). Next,
its brightest pixel is set as the candidate for OD center.
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second step: od boundary detection

OD boundary detection:
Two subimages of size M×M centered at OD center
obtained in the first step are extracted: S from the
original image, and V from the vessel segmentation
image. M = 200.

V is used as mask image: pixels located as vessel in V
subimage are marked as missing in the S subimage for a
inpainting algorithm using soft color morhplogy.

Inpainting step: removes the vessels from the image
making easier the OD and CD segmentations. Result:
subimage IS.
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second step: inpainting algorithm
Inpainting algorithm:
A iterative sequence of images is defined from the
obtained image of the previous step.
This iterative impainting algorithm recovers uniform or
thin regions successfully.

From left to right: S subimage, V subimage, and inpainted
image.
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second step: od boundary detection
OD boundary detection:
From the subimage IS, we obtain its Luminance image
LIS. We apply the Hough Transform (HT) to it. After that,
the candidate circle with the highest metric is selected as
the OD boundary.

Results of the OD boundary detection step after inpaintig
(right) and directly on the original fundus image (left).
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third step: detection of the cd boundary

Detection of the CD boundary
Let RLIS be the region enclosed by the OD boundary in the
luminance image LIS. We apply a thresholding to RLIS with
the threshold value given by th = 1.2 ·mean(RLIS). Then,
we fit a circle to the largest connected component (cc) of
the obtained binary image, centred on its centroid and
radius r ≈

√
area (cc)/π.

Output of the algorithm: display of the original fundus
image with the CD and OD boundaries.
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algorithm for the optic and
cup disc detection

Intermediate images obtained by the algorithm applied on the 19th
image of the DRIVE database. From left to right and from top to
bottom: sub-image centered at the OD center, vessel mask image,
inpainted image, optic disc boundary and optic cup boundary.
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Results
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results

Original image and results obtained using the proposed algorithm
for two different images. From left to right: sub-image centered at
the OD center, OD boundary, CD boundary and both boundaries.
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Conclusions and future work
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conclusions

A novel segmentation algorithm based on Soft Computing
techniques such as Fuzzy Mathematical Morphology and
Soft Color Morphology has been proposed.

It is composed of three main steps:

∙ vessel segmentation and removal
∙ inpainting
∙ optic disc and cup boundaries localisation.

The preliminary results are very promising showing a
visual accurate segmentation of both structures in the
DRIVE database.
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future work

Future work: compare our algorithm with other
state-of-the-art algorithms based on different
techniques from the qualitative and quantitative points
of view.
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Thanks for your attention!
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