

On the characterization of a family of generalized Yager's implications

R. Fernández-Peralta S. Massanet J. Torrens

SCOPIA research group Dept. Maths and Computer Science University of the Balearic Islands Palma, Mallorca

Balearic Islands Health Research Institute (IdISBa) Palma, Mallorca

http://scopia.uib.eu

Outline

The unavoidable characterization of families of fuzzy implication functions

- Fuzzy implication functions
- Additional Properties
- The need of characterization

From (h, e)-implications to some generalizations of Yager's implications

- Threshold horizontal generated implications
- Structure of (h, e)-implications

Characterization of (f, e)-implications

- Case $f(0) < +\infty$
- Case f(0) = +∞

4 Conclusions and future work

The unavoidable characterization of families of fuzzy implication functions

Fuzzy implication functions are useful in a wide range of applications. Therefore, a large bunch of different fuzzy implication functions are needed in order to pick out the one satisfying those properties that are required for a concrete application. Thus, Fuzzy implication functions are useful in a wide range of applications. Therefore, a large bunch of different fuzzy implication functions are needed in order to pick out the one satisfying those properties that are required for a concrete application. Thus,

 more than 40 fuzzy implication functions have been used in control theory, Fuzzy implication functions are useful in a wide range of applications. Therefore, a large bunch of different fuzzy implication functions are needed in order to pick out the one satisfying those properties that are required for a concrete application. Thus,

- more than 40 fuzzy implication functions have been used in control theory,
- a large number of families of fuzzy implication functions have been proposed.

Fuzzy implication functions

The definition of fuzzy implication function is enough flexible to allow the existence of a huge number of fuzzy implication functions.

Definition

A binary operation $I : [0, 1]^2 \rightarrow [0, 1]$ is said to be a *fuzzy implication function* if it satisfies:

(1)
$$I(x,z) \ge I(y,z)$$
 when $x \le y$, for all $z \in [0,1]$.
(12) $I(x,y) \le I(x,z)$ when $y \le z$, for all $x \in [0,1]$.
(13) $I(0,0) = I(1,1) = 1$ and $I(1,0) = 0$.

These operators can satisfy additional properties that come usually from tautologies in classical logic.

Exchange Principle:

I(x, I(y, z)) = I(y, I(x, z)), for all $x, y, z \in [0, 1].$ (EP)

Law of importation with respect to a t-norm T:

$$I(T(x,y),z) = I(x, I(y,z)), \text{ for all } x, y, z \in [0,1].$$
 (LI_T)

Left-neutrality principle:

I(1, y) = y for all $y \in [0, 1]$. (NP)

• The left neutrality principle with $e \in]0, 1[$,

$$I(e, y) = y, \quad y \in [0, 1]. \tag{NP_e}$$

There exist three main strategies to generate new families of fuzzy implication functions:

There exist three main strategies to generate new families of fuzzy implication functions:

Those based on combinations of other logical connectives (aggregation functions, fuzzy negations...): (S, N), R, QL, D, etc.

There exist three main strategies to generate new families of fuzzy implication functions:

- Those based on combinations of other logical connectives (aggregation functions, fuzzy negations...): (S, N), R, QL, D, etc.
- Those based on the use of additive univalued generators: Yager's f and g-generated implications, h and (h, e)-implications, etc.

There exist three main strategies to generate new families of fuzzy implication functions:

- Those based on combinations of other logical connectives (aggregation functions, fuzzy negations...): (S, N), R, QL, D, etc.
- Those based on the use of additive univalued generators: Yager's f and g-generated implications, h and (h, e)-implications, etc.
- Solution Those based on the use of other fuzzy implication functions: φ -conjugation, threshold horizontal and vertical methods, etc.

The need of characterization

From time to time, "new" families of fuzzy implication functions appear. However, some time later some of them are proved to have intersection with other old families or even they are actually the same family!

Solution

To axiomatically characterize the families of fuzzy implication functions in order to know better their structure and behaviour.

(h, e)-implications

There are still some families of fuzzy implication functions which have not been characterized yet. One of them is the family of (h, e)-implications.

Definition (Massanet, Torrens (2011))

Let $h: [0,1] \to [-\infty,\infty]$ be a strictly increasing and continuous function with $h(0) = -\infty$, h(e) = 0 for an $e \in (0,1)$ and $h(1) = +\infty$. The function $I: [0,1]^2 \to [0,1]$ defined by

$$I^{h,e}(x,y) = \begin{cases} 1 & \text{if } x = 0, \\ h^{-1} \left(\frac{x}{e} \cdot h(y) \right) & \text{if } x > 0 \text{ and } y \le e, \\ h^{-1} \left(\frac{e}{x} \cdot h(y) \right) & \text{if } x > 0 \text{ and } y > e, \end{cases}$$

is called an (h, e)-implication. The function h is called an h-generator of $I_{h,e}$.

Importance of (h, e)-implications

They satisfy a controlled increasingness in the second variable.

Theorem (Massanet, Torrens (2012))

Let h be an h-generator with respect to a fixed $e \in (0, 1)$. Then the following properties hold:

- (i) If x > 0 and y < e, then $l^{h,e}(x, y) < e$.
- (ii) If x > 0, then $I^{h,e}(x, e) = e$.
- (iii) If x > 0 and y > e, then $l^{h,e}(x, y) > e$.

Importance of (h, e)-implications

They satisfy a controlled increasingness in the second variable.

Theorem (Massanet, Torrens (2012))

Let h be an h-generator with respect to a fixed $e \in (0, 1)$. Then the following properties hold:

- (i) If x > 0 and y < e, then $l^{h,e}(x, y) < e$.
- (ii) If x > 0, then $I^{h,e}(x, e) = e$.
- (iii) If x > 0 and y > e, then $I^{h,e}(x, y) > e$.

In addition, these operators have proved their potential in edge detection through the fuzzy morphological gradient.

Goal

To advance in the characterization of (h, e)-implications.

From (*h*, *e*)-implications to some generalizations of Yager's implications

Threshold horizontal generated implications

In 2013, Massanet and Torrens presented the structure of this family of fuzzy implication functions by using the threshold horizontal construction method.

Theorem (Massanet, Torrens (2012))

Let I_1 , I_2 be two fuzzy implication functions and $e \in (0, 1)$. Then the binary function $I_{l_1-l_2} : [0, 1]^2 \rightarrow [0, 1]$, called the e-threshold horizontal generated implication from I_1 and I_2 , defined as

$$egin{aligned} & I_{h_1-h_2}(x,y) = \left\{ egin{aligned} 1 & ext{if } x = 0, \ e \cdot I_1\left(x, rac{y}{e}
ight) & ext{if } x > 0 ext{ and } y \leq e, \ e + (1-e) \cdot I_2\left(x, rac{y-e}{1-e}
ight) & ext{if } x > 0 ext{ and } y > e, \end{aligned}
ight. \end{aligned}$$

is a fuzzy implication function.

Threshold horizontal generated implications

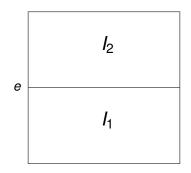


Figure: Structure of an *e*-threshold horizontal generated implication from l_1 and l_2 .

Generalizations of Yager's implications

Let us consider some generalizations of Yager's implications.

Generalizations of Yager's implications

Let us consider some generalizations of Yager's implications.

Definition

Let $f : [0, 1] \rightarrow [0, +\infty]$ be a strictly decreasing and continuous function with f(1) = 0 and $e \in (0, 1)$. The function $I_{f,e} : [0, 1]^2 \rightarrow [0, 1]$ defined by

$$I_{f,e}(x,y) = f^{(-1)}\left(\frac{x}{e} \cdot f(y)\right), \quad x,y \in [0,1]$$

with the understanding $0 \cdot \infty = 0$, is called an (f, e)-generated operation and f its f-generator.

Generalizations of Yager's implications

Let us consider some generalizations of Yager's implications.

Definition

Let $f : [0, 1] \rightarrow [0, +\infty]$ be a strictly decreasing and continuous function with f(1) = 0 and $e \in (0, 1)$. The function $I_{f,e} : [0, 1]^2 \rightarrow [0, 1]$ defined by

$$I_{f,e}(x,y) = f^{(-1)}\left(\frac{x}{e} \cdot f(y)\right), \quad x,y \in [0,1]$$

with the understanding $0 \cdot \infty = 0$, is called an (f, e)-generated operation and f its f-generator.

Definition

Let $g : [0, 1] \rightarrow [0, +\infty]$ be a strictly increasing and continuous function with g(0) = 0 and $e \in (0, 1)$. The function $I_{g,e} : [0, 1]^2 \rightarrow [0, 1]$ defined by

$$I_{g,e}(x,y) = g^{(-1)}\left(rac{e}{x} \cdot g(y)
ight), \quad x,y \in [0,1]$$

with the understanding $\frac{1}{0} = +\infty$ and $+\infty \cdot 0 = \infty$, is called a (g, e)-generated operation and g its g-generator.

Theorem (Massanet, Torrens (2013))

Let $I : [0,1]^2 \rightarrow [0,1]$ be a binary function and $e \in (0,1)$. Then the following statements are equivalent:

- (i) I is an (h, e)-implication with respect to e, that is, $I = I_{h,e}$.
- (ii) There exist an *f*-generator with $f(0) = +\infty$ and a *g*-generator with $g(1) = +\infty$ such that *I* is given by $I = I_{l_{t,e}-l_{g,e}}$.

Moreover, in this case generators h, f and g are related in the following way:

$$f(x) = -h(ex), \quad g(x) = h(e + (1 - e)x), \quad h(x) = \begin{cases} -f\left(\frac{x}{e}\right) & \text{if } x \le e, \\ g\left(\frac{x - e}{1 - e}\right) & \text{if } x > e. \end{cases}$$

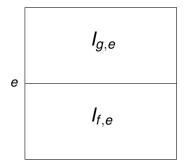


Figure: Structure of an (h, e)-implication.

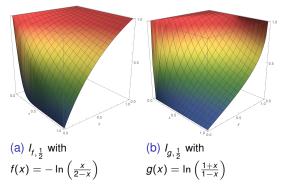


Figure: Generating fuzzy implication functions $I_{f,e}$ and $I_{g,e}$.

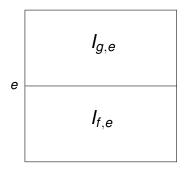


Figure: Structure of an (h, e)-implication.



Figure: Generated (h, e)-implication $I^{h, e}$.

Therefore, it is straightforward to deduce that any possible characterization of (h, e)-implications must rely on the characterizations of (f, e) and (g, e)-implications.

Indeed, in this paper, we have started by characterizing the (f, e)-generated implications.

Characterization of (f, e)-implications

They satisfy the following properties:

• They have a trivial one region.

- They have a trivial one region.
- They do not satisfy (NP), but they satisfy (NP_e).

- They have a trivial one region.
- They do not satisfy (NP), but they satisfy (NP_e).
- If $f(0) = +\infty$, then the natural negation $N_{l_{f,e}}$ is the Gödel negation N_{D_1} .

- They have a trivial one region.
- They do not satisfy (NP), but they satisfy (NP_e).
- If $f(0) = +\infty$, then the natural negation $N_{l_{f,e}}$ is the Gödel negation N_{D_1} .
- If $f(0) < +\infty$, then the natural negation $N_{l_{f,e}}$ is given by

$$N_{l_{f,e}}(x) = \begin{cases} f^{-1}\left(\frac{x}{e}f(0)\right) & \text{if } x \leq e, \\ 0 & \text{if } x > e. \end{cases}$$

They satisfy the following properties:

- They have a trivial one region.
- They do not satisfy (NP), but they satisfy (NP_e).
- If $f(0) = +\infty$, then the natural negation $N_{l_{f,e}}$ is the Gödel negation N_{D_1} .
- If f(0) < +∞, then the natural negation N_{l_{t,e}} is given by

$$N_{l_{f,e}}(x) = \begin{cases} f^{-1}\left(\frac{x}{e}f(0)\right) & \text{if } x \leq e, \\ 0 & \text{if } x > e. \end{cases}$$

• $I_{f,e}$ satisfies (EP) if and only if $f(0) = +\infty$.

Special attention deserves the law of importation.

Proposition

Let f be an f-generator and $e \in (0, 1)$. Then $I_{f,e}$ does not satisfy (LI) with any t-norm.

Special attention deserves the law of importation.

Proposition

Let f be an f-generator and $e \in (0, 1)$. Then $I_{f,e}$ does not satisfy **(LI)** with any t-norm.

However, they satisfy some modified versions of this property.

Law of importation

Definition

A fuzzy implication function / is said to satisfy

• the (x, ey)-law of importation with a t-norm T for some $e \in (0, 1)$, if

$$I(T(x, y), z) = I(x, I(ey, z)), \text{ for all } x, y, z \in [0, 1].$$
 (LI)_{x,ey}

2 the (ex, y)-law of importation with a t-norm T for some $e \in (0, 1)$, if

$$I(T(x, y), z) = I(ex, I(y, z)), \text{ for all } x, y, z \in [0, 1].$$
 (LI)_{ex,y}

Law of importation

Definition

A fuzzy implication function / is said to satisfy

• the (x, ey)-law of importation with a t-norm T for some $e \in (0, 1)$, if

 $I(T(x, y), z) = I(x, I(ey, z)), \text{ for all } x, y, z \in [0, 1].$ (LI)_{x,ey}

2 the (ex, y)-law of importation with a t-norm T for some $e \in (0, 1)$, if

$$l(T(x, y), z) = l(ex, l(y, z)), \text{ for all } x, y, z \in [0, 1].$$
 (LI)_{ex,y}

Proposition

Let f be an f-generator and $e \in (0, 1)$. Then the following properties hold:

- $I_{f,e}$ satisfies (LI)_{x,ey} with respect to T_{P} .
- If $_{f,e}$ satisfies (LI)_{ex,y} with respect to T_{P} if and only if $f(0) = +\infty$.

Characterization when $f(0) < +\infty$

Theorem

Let $I : [0,1]^2 \rightarrow [0,1]$ be a binary function and $e \in (0,1)$. Then the following statements are equivalent:

- (i) I is an (f, e)-generated implication with $f(0) < +\infty$.
- (ii) I satisfies (LI)_{*x*,*ey*} with T_P and N_I is a continuous fuzzy negation which is strictly decreasing in (0, *e*) for some $e \in (0, 1)$ and such that $N_I(e) = 0$.

Moreover, in this case the f-generator is given by

$$f(x) = N_l^{(-1)}(x) = \begin{cases} N_l^{-1}(x) & \text{if } x > 0, \\ e & \text{if } x = 0. \end{cases}$$

Characterization when $f(0) = +\infty$

Theorem

Let $I : [0,1]^2 \rightarrow [0,1]$ be a binary function and $e \in (0,1)$. Then the following statements are equivalent:

(i) I is an (f, e)-generated implication with $f(0) = +\infty$.

Characterization when $f(0) = +\infty$

Theorem

Let $I : [0,1]^2 \rightarrow [0,1]$ be a binary function and $e \in (0,1)$. Then the following statements are equivalent:

(i) I is an (f, e)-generated implication with $f(0) = +\infty$.

(ii) I satisfies (LI)_{x,ey} and (LI)_{ex,y} with respect to T_P , I is continuous except at (0,0) and $I(x, y) = 1 \Leftrightarrow x = 0$ or y = 1.

Characterization when $f(0) = +\infty$

Theorem

Let $I : [0,1]^2 \rightarrow [0,1]$ be a binary function and $e \in (0,1)$. Then the following statements are equivalent:

(i) I is an (f, e)-generated implication with $f(0) = +\infty$.

(iii) I satisfies $(LI)_{x,ey}$ and $(LI)_{ex,y}$ with respect to T_P , $N_I = N_{D_1}$ and there exists $k \in (0, 1)$ such that

 h_k is continuous and strictly decreasing with $h_k(0) = 1$ and $h_k(e) = k$, $h_{\bullet}^{-1}(k) : (0, k) \to [0, e]$ that assigns $h_y^{-1}(k)$ to some $y \in (0, k)$ is a well-defined, continuous and strictly increasing function satisfying $\lim_{y\to 0^+} h_y^{-1}(k) = 0$.

Moreover, in this case the f-generator is given by

$$f(x) = \begin{cases} \frac{h_k^{-1}(x)}{e} & \text{if } k \le x \le 1, \\ \frac{e}{h_x^{-1}(k)} & \text{if } 0 < x < k, \\ +\infty & \text{if } x = 0. \end{cases}$$

Independence between properties

Function /	(LI) _{<i>x</i>,<i>ey</i>} with T_P for some $e \in (0, 1)$	(LI) _{ex,y} with T_{P} for some $e \in (0, 1)$	$l(x,y) = 1 \Leftrightarrow x = 0$ or $y = 1$	$I \operatorname{cont} \setminus \{(0,0)\}$
$\int \frac{xy}{e} \text{if } xy \leq e,$				
1 if xy > e.				
$\max\{1-x,y\}$				
$\int \frac{xy}{x^2+y^2} \text{if } x, y > 0,$				
$\int 0 \qquad \text{if } x = y = 0.$				
$\int y^{x(1-y)} \text{if } x > 0 \text{ or } y > 0,$				
1 if x = y = 0.				
$\begin{cases} 1 - \frac{x}{e} + \frac{xy}{e} & \text{if } x(1-y) \le e, \\ 0 & \text{if } x(1-y) > e. \end{cases}$				
0				
$\int 1 \text{if } x = 0 \text{ or } y = 1,$				
0 otherwise.				

Conclusions and future work

In this paper,

In this paper,

• we have advanced in the characterization of (*h*, *e*)-implications,

In this paper,

- we have advanced in the characterization of (*h*, *e*)-implications,
- we have characterized the family of (*f*, *e*)-implications,

In this paper,

- we have advanced in the characterization of (*h*, *e*)-implications,
- we have characterized the family of (*f*, *e*)-implications,
- two interesting modifications of the law of importation have been introduced.

Several open problems still remain:

Several open problems still remain:

• To axiomatically characterize the (*g*, *e*)-implications.

Several open problems still remain:

- To axiomatically characterize the (g, e)-implications.
- To axiomatically characterize the (*h*, *e*)-implications.

Several open problems still remain:

- To axiomatically characterize the (g, e)-implications.
- To axiomatically characterize the (*h*, *e*)-implications.

Moreover, we want to study further the two modifications of the law of importation introduced here.

Thank you for your attention!